How to find the derivative of #x^4#?

1 Answer
Oct 15, 2015

#(d color(red)(x^4))/(dx) = color(blue)(4x^3)#

Explanation:

In general
#color(white)("XXX")(d color(red)(ax^b))/(dx) = color(blue)(b*ax^(b-1))#

This is a standard formula, but you could derive it from basic definitions of derivative:
#color(white)("XXX")(df(x))/dx = lim_(hrarr0)(f(x+h)-f(x))/h#

In this case:
#color(white)("XXX")(dx^4)/(dx) = lim_(hrarr0) ((x+h)^4-x^4)/h#

#color(white)("XXXXX")=lim_(hrarr0)(cancel(x^4)+4x^3h+6x^2h^2+4xh^3+h^4 cancel(- x^4))/h#

#color(white)("XXXXX")=lim_(hrarr0)4x^3+6x^2h+4xh^2+h^3#

#color(white)("XXXXX")=4x^3#