How to use the Fundamental Theorem of Calculus to evaluate ?

enter image source here

2 Answers
Feb 27, 2016

Split the integral into two pieces.

Explanation:

#int_-pi^pi f(x) dx = int_-pi^0 f(x) dx + int_0^pi f(x) dx#

# = int_-pi^0 6x dx + int_0^pi -9sin(x) dx#

# = 3x^2]_-pi^0 + 9 cosx]_0^pi#

# = [3(0)^2-3(-pi)^2] + [9cos(pi)-9cos(0)]#

# = -3pi^2-18#

Feb 27, 2016

#int_(-pi)^pif(x)dx=3pi^2-9#

Explanation:

The Fundamental Theorem of Calculus states that #int_a^bf(x)dx=[g(x)]_a^b=g(b)-g(a)#, where #g(x)# is the antiderivative of #f(x)#, ie #g'(x)=f(x)#.

Since the given function #f(x)# is a compound function with different definitions each side of #0#, we have to split the integral into #2# parts and select the limits of integration accordingly, that is,

#int_(-pi)^pif(x)dx=int_(-pi)^0 6xdx+int_0^pi-9sinxdx#

#=6[x^2/2]_(-pi)^0+[9cosx]_0^pi#

#=6(0-pi^2/2)+9(cospi-cos0)#

#=3pi^2-9#

#=20.6088#