How to find the value of #csc((5pi)/4)#? Trigonometry Right Triangles Trigonometric Functions of Any Angle 1 Answer Nghi N. Aug 5, 2015 Find #csc ((5pi)/4)# Ans: #-sqrt2# Explanation: #csc((5pi)/4) = 1/sin ((5pi)/4)# #sin ((5pi)/4) = sin (pi/4 + pi) = - sin pi/4 = - sqrt2/2# #csc ((5pi)/4) = 1/sin = -2/sqrt2 = - sqrt2# Answer link Related questions How do you find the trigonometric functions of any angle? What is the reference angle? How do you use the ordered pairs on a unit circle to evaluate a trigonometric function of any angle? What is the reference angle for #140^\circ#? How do you find the value of #cot 300^@#? What is the value of #sin -45^@#? How do you find the trigonometric functions of values that are greater than #360^@#? How do you use the reference angles to find #sin210cos330-tan 135#? How do you know if #sin 30 = sin 150#? How do you show that #(costheta)(sectheta) = 1# if #theta=pi/4#? See all questions in Trigonometric Functions of Any Angle Impact of this question 34144 views around the world You can reuse this answer Creative Commons License