How to integrate dx/(sin(x)+sin(2x)) ?

1 Answer
Feb 23, 2018

#I = 1/2ln|cosx + 1| + 1/6ln|cosx - 1| - 2/3ln|2cosx + 1| + C#

Explanation:

Using some trig:

#I = int 1/(sinx + 2sinxcosx)dx#

#I = int 1/(sinx(1 + 2cosx))dx#

#I = int sinx/(sin^2x(1 + 2cosx))dx#

#I = int (-sinx)/((cos^2x - 1)(1 + 2cosx)) dx#

#I = int (-sinx)/((cosx + 1)(cosx - 1)(2cosx + 1)) dx#

Now we let #u = cosx#. Then #du = -sinxdx# and #dx= (du)/(-sinx)#.

#I = int (-sinx)/((cosx + 1)(cosx - 1)(2cosx + 1)) * (du)/(-sinx)#

#I = int 1/((u + 1)(u - 1)(2u + 1)) du#

This becomes a partial fraction problem.

#A/(u + 1) + B/(u - 1) + C/(2u + 1) = 1/((u + 1)(u - 1)(2u + 1))#

#color(blue)(A(u - 1)(2u + 1) + B(u + 1)(2u + 1) + C(u + 1)(u - 1) =1#

#A(2u^2 - 2u + u - 1) + B(2u^2 + 2u + u + 1) + C(u^2 - 1) = 1#

#A(2u^2 - u - 1) + B(2u^2 + 3u + 1) + C(u^2 - 1) = 1#

#2Au^2 - Au - A + 2Bu^2 + 3Bu + B + Cu^2 - C = 1#

Thus

#{(2A + 2B + C = 0), (3B - A = 0), (B - A - C = 1):}#

If we substitute the second equation #A = 3B# into the first and third we get.
3...

#B - (3B) - C = 1#

#-2B - C = 1#

1...

#2(3B) + 2B + C = 0#
#6B + 2B + C = 0#
#8B + C = 0#

We can easily solve this system by elimination .

#6B = 1#
#B = 1/6#

Therefore

#8(1/6) + C = 0#

#C = -4/3#

And

#A = 3B = 3(1/6) = 1/2#

Thus the partial fraction decomposition is as follows:

#1/(2(u + 1)) + 1/(6(u - 1)) - 4/(3(2u + 1))#

#I=1/2int1/(u+1)du+1/6int1/(u-1)du-2/3intcolor(red)(2)/(color(red)((2u))+1)du#

This can be easily integrated.

#I = 1/2ln|u + 1| + 1/6ln|u - 1| - 2/3ln|2u + 1| + C #

subst. back , # u=cosx#

#I = 1/2ln|cosx + 1| + 1/6ln|cosx - 1| - 2/3ln|2cosx + 1| + C#

Hopefully this helps!

Note:
#A, B ,C # can obtain by putting #u=-1 , u=1 and u=1/2# into

BLUE EQUATION :

#color(blue)(A(u - 1)(2u + 1) + B(u + 1)(2u + 1) + C(u + 1)(u - 1) =1#

#u=-1=>A(-1-1)(-2+1)+B(0)+C(0)=1#

#=>A(-2)(-1)=1=>A=1/2#

#u=1=>A(0)+B(1+1)(2+1)+C(0)=1#

#=>B(2)(3)=1=>B=1/6#

#u=-1/2=>A(0)+B(0)+C(-1/2+1)(-1/2-1)=1#

#=>C(1/2)(-3/2)=1=>C=-4/3#