First get the equation into a form that is easier to solve, ie. #ax^2+bx+c#. So:
#x^(2/3)+5x^(1/3)+6=0#
#=>x^(2\times1/3)+5x^(1/3)+6=0#
#=>x^((1/3)^2)+5x^(1/3)+6=0# #color(white)(blank)#exponent laws #(x^a\timesb=x^((a)^b))#
You can see that it is pretty close to the form #ax^2+bx+c#. It will get to this form if it were #x# instead of #x^(1/3)#. So let #x^(1/3)=u#
#=>u^2+5u+6=0# #color(white)(blank)#letting #x^(1/3)=u#
#=>(u-3)(u-2)=0#
#=>u-3=0# #color(white)(blankspae)#or #color(white)(blankspace)##u-2=0#
#=>u=3# #color(white)(blankspaceeee)#or #color(white)(blankspace)##u=2#
Now we can substitute #u# for #x^(1/3)#
#=>x^(1/3)=3# #color(white)(blankspaceee)#or #color(white)(blankspace)##x^(1/3)=2#
#=>x=3^3# #color(white)(blankspaceee)#or #color(white)(blankspace)##x=2^3#
#=>x=27# #color(white)(blankspaceee)#or #color(white)(blankspace)##x=8#