How to solve for #x# if #x^(2/3)-5x^(1/3)+6=0# ?

3 Answers
Nov 16, 2017

#x=8# or #x=27#

Explanation:

#x^(2/3)-5x^(1/3)+6=0#

Let #y=x^(1/3)#, and then the equation becomes a quadratic in #y#

#y^2-5y+6=0#

#(y-2)(y-3)=0#

#y-2=0 rArr x^(1/3)=2 rArr x=8#

#y-3=0rArrx^(1/3)=3rArrx=27#

Nov 16, 2017

Solution: #x=8 ,x=27#

Explanation:

#x^(2/3)-5x^(1/3)+6=0#. Let #x^(1/3)=a :.x^(2/3)=a^2 #

# a^2 -5a+6=0 or a^2-2a-3a+6=0# or

#a(a-2)-3(a-2)=0 or (a-2)(a-3)=0 #

Either #a-2=0 :. a=2# or #a-3=0 :. a=3#

When #a=3; x^(1/3)=3 #. Cubing both sides we get #x=27#

When #a=2; x^(1/3)=2 #. Cubing both sides we get #x=8#

Solution: #x=8 ,x=27# [Ans]

Nov 16, 2017

#x=27#, or #x=8#

Explanation:

First get the equation into a form that is easier to solve, ie. #ax^2+bx+c#. So:

#x^(2/3)+5x^(1/3)+6=0#

#=>x^(2\times1/3)+5x^(1/3)+6=0#

#=>x^((1/3)^2)+5x^(1/3)+6=0# #color(white)(blank)#exponent laws #(x^a\timesb=x^((a)^b))#

You can see that it is pretty close to the form #ax^2+bx+c#. It will get to this form if it were #x# instead of #x^(1/3)#. So let #x^(1/3)=u#

#=>u^2+5u+6=0# #color(white)(blank)#letting #x^(1/3)=u#

#=>(u-3)(u-2)=0#

#=>u-3=0# #color(white)(blankspae)#or #color(white)(blankspace)##u-2=0#

#=>u=3# #color(white)(blankspaceeee)#or #color(white)(blankspace)##u=2#

Now we can substitute #u# for #x^(1/3)#

#=>x^(1/3)=3# #color(white)(blankspaceee)#or #color(white)(blankspace)##x^(1/3)=2#

#=>x=3^3# #color(white)(blankspaceee)#or #color(white)(blankspace)##x=2^3#

#=>x=27# #color(white)(blankspaceee)#or #color(white)(blankspace)##x=8#