How to solve it ?

enter image source here

2 Answers
Mar 11, 2018

#I=1/2(x+ln(cos(x)+sin(x)))+C#

Explanation:

We want to solve

#I=intcos(x)/(cos(x)+sin(x))dx#

We can quite easily find

#color(green)(I_1=int(cos(x)+sin(x))/(cos(x)+sin(x))dx# and #color(green)(I_2=int(cos(x)-sin(x))/(cos(x)+sin(x))dx)#

So can we find some constants such

#I=AI_1+BI_2#

Only the denominator have changed, thus we seek

#cos(x)=A(cos(x)+sin(x))+B(cos(x)-sin(x))#

By letting #x=0# and #x=pi/2#

#1=A+B#
#color(white)(0=A-Bsscdcfcss)=>A=B=1/2#
#0=A-B#

Therefore

#I=1/2int(cos(x)+sin(x))/(cos(x)+sin(x))dx+1/2int(cos(x)-sin(x))/(cos(x)+sin(x))dx#

#color(white)(I)=1/2intdx+1/2int(1)/(u)du#

#color(white)(I)=1/2x+1/2ln(u)+C#

#color(white)(I)=1/2(x+ln(cos(x)+sin(x)))+C#

The other can be solve by similar approach

Mar 11, 2018

#I_1=1/2[x+ln|(sinx+cosx)|]+C_1,#

and

#I_2=1/2[x-ln|(sinx+cosx)|]+C_2#.

Explanation:

#I_1=intcosx/(cosx+sinx)dx, and I_2=intsinx/(sinx+cosx)dx#.

#:. I_1+I_2=int(cosx+sinx)/(sinx+cosx)dx=int1dx#.

#:. I_1+I_2=x..............................................(ast^1)#.

Also, #I_1-I_2=int(cosx-sinx)/(sinx+cosx)dx#,

#=int{d/dx(sinx+cosx)}/(sinx+cosx)dx#.

#:. I_1-I_2=ln|(sinx+cosx)|........................(ast^2)#.

Soving #I_1 and I_2#, we have,

#I_1=1/2[x+ln|(sinx+cosx)|]+C_1, and, #

#I_2=1/2[x-ln|(sinx+cosx)|]+C_2#.