How to verify ((csc^(3)x-cscxcot^(2)x))/(cscx) =1 ?

2 Answers
Feb 21, 2018

The strategy I used is to write everything in terms of #sin# and #cos# using these identities:

#color(white)=>cscx=1/sinx#

#color(white)=>cotx=cosx/sinx#

I also used a modified version of the Pythagorean identity:

#color(white)=>cos^2x+sin^2x=1#

#=>sin^2x=1-cos^2x#

Now here's the actual problem:

#(csc^3x-cscxcot^2x)/(cscx)#

#((cscx)^3-cscx(cotx)^2)/(1/sinx)#

#((1/sinx)^3-1/sinx*(cosx/sinx)^2)/(1/sinx)#

#(1/sin^3x-1/sinx*cos^2x/sin^2x)/(1/sinx)#

#(1/sin^3x-cos^2x/sin^3x)/(1/sinx)#

#((1-cos^2x)/sin^3x)/(1/sinx)#

#(sin^2x/sin^3x)/(1/sinx)#

#(1/sinx)/(1/sinx)#

#1/sinx*sinx/1#

#1#

Hope this helps!

Feb 21, 2018

Please see below.

Explanation:

#LHS=(csc^3x-cscx*cot^2x)/cscx#

#=csc^3x/cscx-(cscx*cot^2x)/cscx#

#=csc^2x-cot^2x#

#=1/sin^2x-cos^2x/sin^2x#

#=(1-cos^2x)/sin^2x#

#=sin^2x/sin^2x=1=RHS#