It is well known that #cos(pi/3) = 1/2#
Using the identity, #cos(x) = cos(-x)#, then:
#cos(-pi/3) = 1/2#
Using the identity #sin(x) = +-sqrt(1-cos^2(x))#:
#sin(-pi/3) = +-sqrt(1-cos^2(-pi/3))#
Substitute #(1/2)^2# for #cos^2(-pi/3)#
#sin(-pi/3) = +-sqrt(1-(1/2)^2)#
#sin(-pi/3) = +-sqrt(3)/2#
We know that the sine function is negative in this quadrant, therefore, drop the +:
#sin(-pi/3) = -sqrt(3)/2#
Use the identity #tan(x) = sin(x)/cos(x)#
#tan(-pi/3) = (-sqrt(3)/2)/(1/2)#
#tan(-pi/3) = -sqrt(3)#
Use the identity #cot(x) = 1/tan(x)#:
#cot(x) = 1/-sqrt(3) = -sqrt3/3#
Use the identity #sec(x) = 1/cos(x)#
#sec(-pi/3) = 1/cos(pi/3) = 1/(1/2) = 2#
Use the identity #csc(x) = 1/sin(x)#
#csc(-pi/3) = 1/sin(pi/3) = 1/(-sqrt(3)/2) = -2sqrt(3)/3#