How would you find the exact value of the six trigonometric function of -45?

1 Answer
Sep 29, 2016

#sin(-45^@) = -sqrt(2)/2#

#cos(-45^@) = sqrt(2)/2#

#tan(-45^@) = -1#

#sec(-45^@) = sqrt(2)#

#csc(-45^@) = -sqrt(2)#

#cot(-45^@) = -1#

Explanation:

First let's look at #sin 45^@# and #cos 45^@#

Consider the right angled triangle formed by cutting a #1xx1# square in half diagonally...

enter image source here

Recall that:

#sin theta = "opposite"/"hypotenuse"#

#cos theta = "adjacent"/"hypotenuse"#

Hence we find:

#sin 45^@ = cos 45^@ = 1/sqrt(2) = sqrt(2)/2#

Next note that #sin# is an odd function and #cos# an even function.

Hence:

#sin(-45^@) = -sin 45^@ = -sqrt(2)/2#

#cos(-45^@) = cos 45^@ = sqrt(2)/2#

Hence we can find the other #4# trigonometric functions:

#tan(-45^@) = sin(-45^@)/cos(-45^@) = (-sqrt(2)/2) / (sqrt(2)/2) = -1#

#sec(-45^@) = 1/cos(-45^@) = 1/(sqrt(2)/2) = 2/sqrt(2) = sqrt(2)#

#csc(-45^@) = 1/sin(-45^@) = 1/(-sqrt(2)/2) = -2/sqrt(2) = -sqrt(2)#

#cot(-45^@) = cos(-45^@)/sin(-45^@) = (sqrt(2)/2)/(-sqrt(2)/2) = -1#