How would you find the exact value of the six trigonometric function of -45?
1 Answer
Explanation:
First let's look at
Consider the right angled triangle formed by cutting a
Recall that:
#sin theta = "opposite"/"hypotenuse"#
#cos theta = "adjacent"/"hypotenuse"#
Hence we find:
#sin 45^@ = cos 45^@ = 1/sqrt(2) = sqrt(2)/2#
Next note that
Hence:
#sin(-45^@) = -sin 45^@ = -sqrt(2)/2#
#cos(-45^@) = cos 45^@ = sqrt(2)/2#
Hence we can find the other
#tan(-45^@) = sin(-45^@)/cos(-45^@) = (-sqrt(2)/2) / (sqrt(2)/2) = -1#
#sec(-45^@) = 1/cos(-45^@) = 1/(sqrt(2)/2) = 2/sqrt(2) = sqrt(2)#
#csc(-45^@) = 1/sin(-45^@) = 1/(-sqrt(2)/2) = -2/sqrt(2) = -sqrt(2)#
#cot(-45^@) = cos(-45^@)/sin(-45^@) = (sqrt(2)/2)/(-sqrt(2)/2) = -1#