I don't understand what I did wrong in my process? The question is: Find the point on the plane 6x − y + 6z = 60 nearest the origin. The answer is: < 360/73, -60/73, 360/73 > I got: < 6(360/73), -1(360/73), 6(360/73) >
#g(x)=6x-y+6z=60#
#gradg(x)=<6,-1,6>#
#D^2=(x-0)^2+(y-0)^2+(z-0)^2#
#6x-6z-60=y#
#D^2(x,z)=x^2+(6x+6z-60)^2+z^2#
#D^2(x,z)=37x^2+72xz-720x-720z+3600+37z^2#
#gradD^2(x,z)=<74x+72z-720,74z+72x-720>#
#gradD^2(x,z)=<37x+36z-360,37z+36x-360>#
#a) 37x+36z-360=0#
#b) 37z+36x-360=0#
#a)-b) = 37x-36x+36z-37z-360+360=0#
#a)-b) = x-z=0 -> x=z#
#x=z, -> 37(x)+36x-360=0 #
#x=360/73#
# < x,y,z > * <6,-1,6> = <6(360/73),-1(360/73),6(360/73)>#
1 Answer
See below
Explanation:
You're using a Lagrange multiplier:
Condition:
To be optimised:
#nabla f = lambda nabla g#