If #(1+x)^n=c_0+c_1x+c_2x^2+cdots+c_nx^n# then show that #c_0.c_n+c_1.c_(n-1)+c_2.c_(n-2)+cdots+c_n.c_0=((2n)!)/(n!)^2#?

1 Answer
Jan 15, 2018

Please see below.

Explanation:

As #(1+x)^n=c_0+c_1x+c_2x^2+......+c_nx^n#

consider coefficient of #x^n# in #(1+x)^nxx(1+x)^n#

this will be #c_0.c_n+c_1.c_(n-1)+c_2.c_(n-2)+......+c_n.c_0#

but #(1+x)^nxx(1+x)^n=(1+x)^(2n)# and coefficient of #x^n# in this is #c_n^(2n)=((2n)!)/(n!(2n-n)!)#

Hence #c_0.c_n+c_1.c_(n-1)+c_2.c_(n-2)+......+c_n.c_0=((2n)!)/(n!(2n-n)!)=((2n)!)/(n!)^2#