If #3secalpha-5tanalpha=k# and #6secalpha+ktanalpha=5# then what is the value of #k^2# among the following option?

#a)20#
#b)25#
#c)34#
#d)37#

2 Answers
Jan 13, 2018

Answer is (a) as #k^2=20#

Explanation:

We have #3secalpha-5tanalpha=k# .......(A) and

#6secalpha+ktanalpha=5# .......(B) and

Multiplying (A) by #2# and subtracting from (A), we get

#(k+10)tanalpha=5-2k# and #tanalpha=(5-2k)/(k+10)#

Similarly multiplying (A) by #k# and (B) by #5# and adding two together, we get

#(3k+30)secalpha=k^2+25# and #secalpha=(k^2+25)/(3k+30)#

Now as #sec^2alpha=tan^2alpha+1#, we have

#((k^2+25)/(3k+30))^2=((5-2k)/(k+10))^2+1#

or #(k^2+25)^2=9(5-2k)^2+(3k+30)^2#

or #k^4+50k^2+625=225-180k+36k^2+9k^2+180k+900#

or #k^4+5k^2-500=0#

or #(k^2+25)(k^2-20)=0#

As #k^2+25!=0#, we have #k^2=20#

and answer is (a).

Jan 13, 2018

#k^2=20#

Explanation:

.

#3secalpha-5tanalpha=k#

#6secalpha+ktanalpha=5#

Multiplying the first equation by #-2#, we get:

#-6secalpha+10tanalpha=-2k#

#6secalpha+ktanalpha=5#

Adding the two equations together, we get:

#(10+k)tanalpha=5-2k#

#tanalpha=(5-2k)/(10+k)#

From the first equation, we get:

#secalpha=(k+5tanalpha)/3#

Let's plug in the value of #tanalpha#:

#secalpha=(k+5((5-2k)/(10+k)))/3=(k^2+25)/(3(10+k))#

#1/cosalpha=(k^2+25)/(3(10+k))#

#cosalpha=(3(10+k))/(k^2+25)#

#cos^2alpha=(9(10+k)^2)/(k^2+25)^2#

Since #tanalpha=sinalpha/cosalpha#, we can say:

#(5-2k)/(10+k)=sinalpha/((3(10+k))/(k^2+25)#

#(5-2k)/(10+k)=sinalpha((k^2+25)/(3(10+k)))#

Let's multiply both sides by #3(10+k)#

#3(5-2k)=sinalpha(k^2+25)#

#sinalpha=(3(5-2k))/(k^2+25)#

#sin^2alpha=(9(5-2k)^2)/(k^2+25)^2#

Using identity #sin^2alpha+cos^2alpha=1#, we can substitute values:

#(9(5-2k)^2)/(k^2+25)^2+(9(10+k)^2)/(k^2+25)^2=1#

Multiplying both sides by #(k^2+25)^2#, we get:

#9(5-2k)^2+9(10+k)^2=(k^2+25)^2#

Simplifying, we get:

#45(k^2+25)=(k^2+25)^2#

Dividing both sides by #(k^2+25)#, we get:

#45=k^2+25#

#k^2=20#