If #a^2+2=3^(2/3)+3^(-2/3)# then show #3a^3+9a=8#? Thanks in Advance.

2 Answers
Feb 19, 2018

Actually #3a^3+9a = +-8#

Explanation:

Note that:

#(3^(1/3)-3^(-1/3))^2 = (3^(1/3))^2-2(3^(1/3))(3^(-1/3)+(3^(-1/3))^2#

#color(white)((3^(1/3)-3^(-1/3))^2) = 3^(2/3)-2+3^(-2/3)#

So given:

#a^2+2 = 3^(2/3)+3^(-2/3)#

Subtract #2# from both sides to get:

#a^2 = 3^(2/3)-2+3^(-2/3) = (3^(1/3)-3^(-1/3))^2#

So:

#a = +-(3^(1/3)-3^(-1/3))#

If #a = 3^(1/3)-3^(-1/3)# then:

#3a^3+9a = 3a(a^2+3)#

#color(white)(3a^3+9a) = 3(3^(1/3)-3^(-1/3))((3^(1/3)-3^(-1/3))^2+3)#

#color(white)(3a^3+9a) = 3(3^(1/3)-3^(-1/3))(3^(2/3)+1+3^(-2/3))#

#color(white)(3a^3+9a) = 3(3^(1/3)(3^(2/3)+1+3^(-2/3))-3^(-1/3)(3^(2/3)+1+3^(-2/3)))#

#color(white)(3a^3+9a) = 3((3+3^(1/3)+3^(-1/3))-(3^(1/3)+3^(-1/3)+1/3))#

#color(white)(3a^3+9a) = 3(3-1/3) = 9-1 = 8#

If we reverse the sign of #a# then #3a^3+9a = -8#

Feb 19, 2018

#3x^3+9a = +-8#

Explanation:

Here's another way of doing this that is slightly less painful:

Let #t = 3^(1/3)#

Then:

#a^2+2 = t^2+1/t^2#

Adding #1# to both sides, we have:

#a^2+3 = t^2+1+1/t^2#

Instead, subtracting #2# from both sides, we get:

#a^2 = t^2-2+1/t^2 = (t-1/t)^2#

So:

#a = +-(t-1/t)#

Then:

#3a^3+9a = 3a(a^2+3)#

#color(white)(3a^3+9a) = +-3(t-1/t)(t^2+1+1/t^2)#

#color(white)(3a^3+9a) = +-3(t(t^2+1+1/t^2)-1/t(t^2+1+1/t^2))#

#color(white)(3a^3+9a) = +-3((t^3+t+1/t)-(t+1/t+1/t^3))#

#color(white)(3a^3+9a) = +-3(t^3-1/t^3)#

#color(white)(3a^3+9a) = +-3(3-1/3)#

#color(white)(3a^3+9a) = +-(9-1)#

#color(white)(3a^3+9a) = +-8#