If a, b, c #epsilon# R+, then #(bc)/(b+c) + (ac)/(a+c) + (ab)/(a+b)# is always ? a.)#<= 1/2(a+b+c)# b.)#>=1/3[sqrt(abc)]# c.)#<= 1/3(a+b+c)# d.)#>=1/2[sqrt(abc)]#

If a, b, c #epsilon# R+, then #(bc)/(b+c) + (ac)/(a+c) + (ab)/(a+b)# is always ?
a.)#<= 1/2(a+b+c)# b.)#>=1/3[sqrt(abc)]# c.)#<= 1/3(a+b+c)# d.)#>=1/2[sqrt(abc)]#

2 Answers
Nov 24, 2017

Let #y=(bc)/(b+c) + (ac)/(a+c) + (ab)/(a+b)#

Now

#1/2(a+b+c)-y#

#= 1/2(a+b+c)-(bc)/(b+c) - (ac)/(a+c) - (ab)/(a+b)#

#=1/4[2(a+b+c)-(4bc)/(b+c) - (4ac)/(a+c) - (4ab)/(a+b)]#

#=1/4[(b+c)-(4bc)/(b+c) +(c+a)- (4ac)/(a+c) +(a+b)- (4ab)/(a+b)]#

#=1/4[((b+c)^2-4bc)/(b+c) +((c+a)^2- 4ac)/(a+c) +((a+b)^2- 4ab)/(a+b)]#

#=1/4[(b-c)^2/(b+c) +(c-a)^2/(a+c) +(a-b)^2/(a+b)]>=0#

[As it is given that #a,b,c in R+#]

So

#1/2(a+b+c)-y>=0#

#=>y<=1/2(a+b+c)#

#=>(bc)/(b+c) + (ac)/(a+c) + (ab)/(a+b)<=1/2(a+b+c)#

Nov 24, 2017

See below.

Explanation:

#f(a,b,c) = (b c)/(b + c) + (a c)/(a + c) + (a b)/(a + b)#

is symmetric regarding its arguments so it have a maximum/minimum for #a=b=c=lambda# which is

#f(lambda,lambda,lambda) = 3/2lambda = 1/2(lambda+lambda+lambda)# so the answer is

#1/2(a+b+c) ge (b c)/(b + c) + (a c)/(a + c) + (a b)/(a + b)#