If cos(x) = (1/4), where x lies in quadrant 4, how do you find tan(x - pi/4)?

1 Answer
Aug 27, 2016

The reqd. value=(sqrt15+1)/(sqrt15-1).

Explanation:

We have, tan(x-pi/4)=(tanx-tan(pi/4))/(1+tanxtan(pi/4))

=(tanx-1)/(1+tanx)=((sinx-cosx)/(sinx+cosx))

So, we need sin x to find the reqd. value.

cos x=1/4, x in Q_(IV) rArr sinx=-sqrt(1-cos^2x)=-sqrt15/4.

Hence, the reqd. value=(-sqrt15/4-1/4)/(-sqrt15/4+1/4)=(sqrt15+1)/(sqrt15-1).