If #f(x+1) =2x# and #g(3x) = x+6#, how do you find the value of #f^-1(g(f(13)))3?

1 Answer
Oct 26, 2015

#f^(-1)(g(f(13)))= 16#

#f^(-1)(g(f(13)))3 = 48# (if the final #3# was intended to be a multiplication factor)

The question is not well formatted.

Explanation:

If #f(x+1) = 2x#
then substituting #a# for #x+1# (which #rarr x=a-1#)
#f(a) = 2(a-1) =2a-2#

Similarly, if #g(3x) = x+6#
then substituting #b# for #3x# (which #rarr x=b/3#)
#g(b)=b/3+6#

By definition of inverse of a function
#f^(-1)(f(a))=a#

#f^(-1)(2a-2)=a#

#f^(-1)(c) =(c+2)/2#

So now we have:
#f^(-1)(g(f(13)))#

substituting #g(f(13))# for #c# above
#color(white)("XXX")=(g(f(13))+2)/2#

substituting #f(13)# for #b# in the equation for #g(b)#
#color(white)("XXX")=((f(13)+6)+2)/2=(f(13)+8)/2#

substituting #13# for #a# in the equation for #f(a)#
#color(white)("XXX")=(2(13)-2+8)/2=32/2=16#