If #f(x)=ax^n#, then why is #f'(x)=nax^(n-1)#?

1 Answer
May 21, 2017

By definition of the derivative:

#f'(x) = lim_(h->0) (f(x+h)-f(x))/h#

If #f(x) = ax^n# then we have:

#f'(x) = lim_(h->0) (a(x+h)^n-ax^n)/h = a lim_(h->0) 1/h((x+h)^n-x^n)#

Now use the binomial formula:

#f'(x) = a lim_(h->0) 1/h (sum_(j=0)^n ((n),(j)) x^(n-j) h^j -x^n)#

#f'(x) = a lim_(h->0) 1/h (cancel(x^n)+nx^(n-1)h + (n(n-1))/2 x^(n-2)h^2+...nxh^(n-1)+h^n-cancel(x^n))#

The two terms in #x^n# cancel each other and all the other have a factor that is a power of #h#:

#f'(x) = a lim_(h->0) 1/cancelh (cancelh (nx^(n-1) + (n(n-1))/2 x^(n-2)h+...nxh^(n-2)+h^(n-1))#

#f'(x) = a lim_(h->0) (nx^(n-1) + (n(n-1))/2 x^(n-2)h+...nxh^(n-2)+h^(n-1))#

Now for #h->0# all the powers of #h# go to zero, so:

#f'(x) = anx^(n-1)#