If #f(x) =xe^x# and #g(x) = sinx-x#, what is #f'(g(x)) #? Calculus Basic Differentiation Rules Chain Rule 1 Answer Lucy Jul 11, 2018 #f'(g(x))=(cosx-1)e^(sinx-x)(sinx-x+1)# Explanation: #f(x)=xe^x# #g(x)=sinx-x# #f(g(x))# means that we sub #sinx-x# into any #x# in #f(x)# #f(g(x))=(sinx-x)e^(sinx-x)# #f'(g(x))=(sinx-x)times(cosx-1)e^(sinx-x)+e^(sinx-x)times (cosx-1)# #f'(g(x))=(sinx-x)(cosx-1)e^(sinx-x)+(cosx-1)e^(sinx-x)# #f'(g(x))=(cosx-1)e^(sinx-x)(sinx-x+1)# Answer link Related questions What is the Chain Rule for derivatives? How do you find the derivative of #y= 6cos(x^2)# ? How do you find the derivative of #y=6 cos(x^3+3)# ? How do you find the derivative of #y=e^(x^2)# ? How do you find the derivative of #y=ln(sin(x))# ? How do you find the derivative of #y=ln(e^x+3)# ? How do you find the derivative of #y=tan(5x)# ? How do you find the derivative of #y= (4x-x^2)^10# ? How do you find the derivative of #y= (x^2+3x+5)^(1/4)# ? How do you find the derivative of #y= ((1+x)/(1-x))^3# ? See all questions in Chain Rule Impact of this question 1708 views around the world You can reuse this answer Creative Commons License