Using #int sec x dx = ln|sec x + tan x | + c# , find #int 1/ sqrt (2x^2 - 4) dx# using suitable trigonometric substitution?

1 Answer
Jul 18, 2017

# int \ 1/sqrt(2x^2-4) \ dx = (sqrt2)/2 \ ln | x+sqrt( (x^2-2) ) | + C #

Explanation:

We seek:

# I = int \ 1/sqrt(2x^2-4) \ dx #
# \ \ = int \ 1 / sqrt( 4(1/2x^2-1 ) ) \ dx #
# \ \ = 1/2 \ int \ 1 / (sqrt( (x/sqrt(2))^2-1 ) ) \ dx #

Comparing with the trig identity #tan^2 A -= sec^2A-1 #, Consider a substitution of the form:

# x/sqrt(2) = sec theta => dx/(d theta) = sqrt(2) sec theta tan theta #

If we substitute this into our integral we have:

# I = 1/2 \ int \ 1 / (sqrt( sec^2theta-1 ) ) \ sqrt(2) sec theta tan theta \ d theta#

# \ \ = (sqrt2)/2 \ int \ (sec theta tan theta) / (sqrt( tan^2 theta ) ) \ d theta#

# \ \ = (sqrt2)/2 \ int \ (sec theta tan theta) / (tan theta ) \ d theta#

# \ \ = (sqrt2)/2 \ int \ sec theta \ d theta#

# \ \ = (sqrt2)/2 \ ln|sectheta+tantheta| + A#

Again Using #tan^2 A -= sec^2A-1 # we have:

# tan^2 theta -= x^2/2 - 1 = (x^2-2)/2 #
# => tan theta = sqrt( (x^2-2)/2 ) #

And using the above results to restore the substitution we have:

# I = (sqrt2)/2 \ ln |x/sqrt(2)+sqrt( (x^2-2)/2 )| + A#
# \ \ = (sqrt2)/2 \ ln | 1/sqrt(2) ( x+sqrt( (x^2-2) ) ) | + A#
# \ \ = (sqrt2)/2 ln(1/sqrt(2)) + (sqrt2)/2 \ ln | x+sqrt( (x^2-2) ) | + A#
# \ \ = (sqrt2)/2 \ ln | x+sqrt( (x^2-2) ) | + C#