If sin theta = -5/13 and cos theta = -12/13, how do you find cot theta?

1 Answer
Apr 1, 2018

cottheta=12/5

Explanation:

We know that:

tantheta=sintheta/costheta

and

cottheta=1/tantheta

So we can plug in our values:

color(white)=cot(theta)

=1/tan(theta)

=1/(sintheta/costheta)

=1/(sintheta/costheta)color(blue)(*costheta/costheta)

=1/(sintheta/color(red)cancelcolor(black)costheta)color(blue)(*costheta/color(red)cancelcolor(blue)costheta)

=1/sinthetacolor(blue)(*costheta)

=costheta/sintheta

Now plug in our values:

=(-12/13)/(-5/13)

=(-12/13)/(-5/13)color(blue)(*13/13)

=(-12/color(red)cancelcolor(black)13)/(-5/color(red)cancelcolor(black)13)color(blue)(*color(red)cancelcolor(blue)13/color(red)cancelcolor(blue)13)

=(-12)/(-5)color(blue)(*1/1)

=(-12)/(-5)

=(color(red)cancelcolor(black)-12)/(color(red)cancelcolor(black)-5)

=12/5

That's the solution. Hope this helped!