If #y= sinx/ x^2#, find #dy/dx# and #(d^2y)/(dx^2)#. Then prove that #x^2 (d^2y)/(dx^2) + 4x dy/dx + (x^2 + 2) y = 0# ?
1 Answer
We seek to show that:
# x^2 (d^2y)/(dx^2) + 4x dy/dx + (x^2 + 2) y = 0 # where#y= sinx/x^2#
Using the quotient rule then differentiating
# dy/dx = { (x^2)(cosx)-(2x)(sinx) } / (x^2)^2 #
# \ \ \ \ \ \ = (xcosx-2sinx)/x^3 #
And differentiating a second time, we have:
# (d^2y)/(dx^2) = { (x^3)(-xsinx+cosx-2cosx) - (3x^2)(xcosx-2sinx) } / (x^3)^2 #
# \ \ \ \ \ \ \ = { -x^2sinx+xcosx-2xcosx - 3xcosx+6sinx) } / (x^4) #
# \ \ \ \ \ \ \ = ( -x^2sinx-4xcosx +6sinx ) / (x^4) #
And so, considering the LHS of the given expression:
# LHS = x^2 (d^2y)/(dx^2) + 4x dy/dx + (x^2 + 2) y #
# \ \ \ \ \ \ \ \ = x^2 {( -x^2sinx-4xcosx +6sinx ) / (x^4)} #
# \ \ \ \ \ \ \ \ \ \ \ \ + 4x {(xcosx-2sinx)/x^3} #
# \ \ \ \ \ \ \ \ \ \ \ \ + (x^2 + 2) {sinx/x^2} #
# \ \ \ \ \ \ \ \ = {( -x^2sinx-4xcosx +6sinx ) / (x^2)} #
# \ \ \ \ \ \ \ \ \ \ \ \ + 4 {(xcosx-2sinx)/x^2} #
# \ \ \ \ \ \ \ \ \ \ \ \ + (x^2 + 2) {sinx/x^2} #
# \ \ \ \ \ \ \ \ = 1/x^2 {-x^2sinx-4xcosx +6sinx + 4xcosx-8sinx + (x^2 + 2)sinx} #
# \ \ \ \ \ \ \ \ = 0 \ \ \ # QED