Integral #int_(1/e)^e ln(x)^2018/(x+1) dx# ?

2 Answers
Apr 3, 2018

#F(e)-F(1/e)= 2/2019#

Explanation:

#F(x)= int_(1/e)^eln^2018x/(x+1)dx=ln^2019x/2019#

Evaluate #F(e)-F(1/e)#

#F(e)=ln^2019e/2019=1^2019/2019=1/2019#

#F(1/e)=ln^2019(1/e)/2019=(-1)^2019/2019=-1/2019#

Finally: #F(e)-F(1/e)=1/2019-(-1/2019)=2/2019#

Apr 3, 2018

#int_(1/e)^(e) (Lnx)^2018/(x+1)*dx=1/2019#

Explanation:

#I=int_(1/e)^(e) (Lnx)^2018/(x+1)*dx#

After using #x=1/y# and #dx=-dy/y^2# transform,

#I=int_(e)^(1/e) (Ln(1/y))^2018/(1/y+1)*(-dy/y^2)#

=#int_(e)^(1/e) (-Lny)^2018/((y+1)/y)*(-dy/y^2)#

=#int_(e)^(1/e) (Lny)^2018/(y^2+y)*(-dy)#

=#int_(1/e)^(e) (Lny)^2018/(y^2+y)*dy#

=#int_(1/e)^(e) (Lnx)^2018/(x^2+x)*dx#

After summing 2 integrals,

#2I=int_(1/e)^(e) (Lnx)^2018/(x+1)*dx#+#int_(1/e)^(e) (Lnx)^2018/(x^2+x)*dx#

=#int_(1/e)^(e) (x*(Lnx)^2018)/(x^2+x)*dx#+#int_(1/e)^(e) (Lnx)^2018/(x^2+x)*dx#

=#int_(1/e)^(e) ((x+1)*(Lnx)^2018*dx)/(x*(x+1))#

=#int_(1/e)^(e) ((Lnx)^2018*dx)/x#

=#[(Lnx)^2019/2019]_(1/e)^(e)#

=#2/2019#

Thus,

#I=int_(1/e)^(e) (Lnx)^2018/(x+1)*dx=1/2019#