Integral of (6x-1)dx/sqrt(x^2+3x+8) ?

1 Answer

#6sqrt(x^2+3x+8)#-#(10sqrt23)/23ln(sqrt(4x^2+12x+32)+2x+3)+C#

Explanation:

#int (6x-1)/sqrt(x^2+3x+8)*dx#

=#int (12x-2)/sqrt(4x^2+12x+32)*dx#

=#int (12x-2)/sqrt((2x+3)^2+23)*dx#

=#int (12x+18-20)/sqrt((2x+3)^2+23)*dx#

=#3/2*int (8x+12)/sqrt((2x+3)^2+23)*dx#-#int 20/sqrt((2x+3)^2+23)*dx#

#A=3/2*int (8x+12)/sqrt((2x+3)^2+23)*dx#

After using #y=4x^2+12x+32# and #dy=(8x+12)*dx# transforms, #A# becomes

#A=3/2*int dy/sqrty#

=#3sqrty#

=#3sqrt(4x^2+12x+32)#

=#6sqrt(x^2+3x+8)#

#B=int 20/sqrt((2x+3)^2+23)*dx#

=#10int 2/sqrt((2x+3)^2+23)*dx#

After using #2x+3=sqrt23*tanz# and #2dx=sqrt23*(secz)^2*dz# transforms, #B# becomes

#B=int (10sqrt23*(secz)^2)/(23secz)*dz#

=#(10sqrt23)/23int secz*dz#

=#(10sqrt23)/23int (secz*(secz+tanz)*dz)/(secz+tanz)#

=#(10sqrt23)/23ln(secz+tanz)-C1#

After using #2x+3=sqrt23*tanz#, #tanz=(2x+3)/sqrt23 and #secz=#sqrt(4x^2+12x+32)/sqrt23# inverse transforms,

#B=(10sqrt23)/23ln(sqrt(4x^2+12x+32)+2x+3)-C#

Thus,

#int (6x-1)/sqrt(x^2+3x+8)*dx#

=#A-B#

=#6sqrt(x^2+3x+8)#-#(10sqrt23)/23ln(sqrt(4x^2+12x+32)+2x+3)+C#

Note: #C=C1+Ln(sqrt23)#