Integrate the following: #intsqrt(1-y^2) dy# ?

1 Answer
Mar 12, 2018

#int sqrt(1-y^2) dy = (arcsiny + ysqrt(1-y^2))/2 +C#

Explanation:

Substitute #y = sinx#, #dy = cosx dx#. As the integrand is defined only for #y in [-1,1]#, accordingly #x# varies in #[-pi/2,pi/2]#. In this interval #cosx# is always positive, so:

#int sqrt(1-y^2) dy = int sqrt(1-sin^2x) cosxdx = int cos^2xdx#

Now using the trigonometric identity:

#cos^2 theta = (1+cos2 theta)/2#

we have:

#int sqrt(1-y^2) dy = int (1+cos2x)/2 dx#

#int sqrt(1-y^2) dy = 1/2 int dx +1/2 int cos2x dx#

#int sqrt(1-y^2) dy = x/2 + (sin 2x)/4 +C#

#int sqrt(1-y^2) dy = x/2 + (sinxcosx)/2 +C#

To undo the substitution, note that:

#x = arcsin y#

#sinx = y#

#cosx = sqrt(1-y^2)#

so finally:

#int sqrt(1-y^2) dy = (arcsiny + ysqrt(1-y^2))/2 +C#