Integration of cosx.sin square x ?

1 Answer
Mar 23, 2018

#= -sin(x)* sin(x^2) + 2xcos(x^2)*Cos(x)#

Explanation:

#Cos(x) * sin(x^2)#

Using Product rule, #(fg)^' = f'g + g'f# :

#= -sin(x)* sin(x^2) + cos(x^2)*2x *Cos(x)#

Note: I used Chain rule to find the derivative of #Sin(x^2)#:

#= -sin(x)* sin(x^2) + 2xcos(x^2)*Cos(x)#