Inverse trig function?

Prove by means of differentiation that if a > 0
enter image source here

3 Answers
Aug 3, 2017

# int \ 1/(a^2+u^2) \ du = 1/a arctan(u/a) + C #

Explanation:

We want to show:

# I = int \ 1/(a^2+u^2) \ du = 1/a arctan(u/a) + C#

Method 1 - Differentiation

Let us denote the function by #y#. as follows::

# y =1/a arctan (u/a) #
# :. ay =arctan (u/a) #
# :. tan(ay) =u/a #

Implicitly differentiating we get:

# asec^2(ay)dy/(du) = 1/a #
# :. sec^2(ay)dy/(du) = 1/a^2 #

Using the trig Identity #tan^2A+1=sec^2A # we have

# :. (tan^2(ay)+1)dy/(du) = 1/a^2 #
# :. ((u/a)^2+1)dy/(du) = 1/a^2 #
# :. dy/(du) = 1/( a^2 (1+(u/a)^2) )#
# :. dy/(du) = 1/( a^2 (1+u^2/a^2 )#
# :. dy/(du) = 1/(a^2+u^2) #

Hence we have:

# d/du(1/a arctan(u/a) ) = 1/(a^2+u^2) #
# => int \ 1/(a^2+u^2) \ du = 1/a arctan(u/a) + C \ \ \ # QED

Method 2 - Integration

Although asked to differentiate to form the solution, we can also readily integrate the function:

Let us perform a substitution:

# u=a tan theta => (du)/(d theta) = asec^2 theta; \ \ theta = arctan(u/a) #

Then provided #a != 0# substituting into the integral gives:

# I = int \ 1/(a^2+a^2tan^2theta) \ (asec^2 theta) \ d theta #
# \ \ = 1/a \ int \ (sec^2 theta)/(1+tan^2theta) \ d theta #
# \ \ = 1/a \ int \ (sec^2 theta)/(sec^2theta) \ d theta #
# \ \ = 1/a \ int \ d theta #
# \ \ = 1/a theta + C #

And restoring the substitution, we get:

# I = 1/a arctan(u/a) + C \ \ \ \ # QED

Aug 3, 2017

See below.

Explanation:

#d/dx(arctan(x)) = 1/(1+x^2)#

Now use the chain rule. Note that #a# is a constant.

#d/(du)(1/aarctan(u/a)) = 1/a(1/(1+(u/a)^2) * d/(du)(u/a))#

# = 1/a(1/(1+(u/a)^2) * (1/a))#

# = 1/(a^2+u^2)#

Therefore,

#int 1/(a^2+u^2) =1/aarctan(u/a) +C#

Note

We don't need the restriction #a > 0#. We only need #a != 0#

Aug 3, 2017

#"see explanation"#

Explanation:

#y=1/atan^-1(u/a)+c#

#rArrdy/(du)=1/axx1/(1+(u/a)^2)xxd/(du)(u/a)#

#color(white)(rArrdy/du)=1/a^2xx1/(1+(u^2/a^2)#

#color(white)(rArrdy/du)=1/(a^2+u^2#

#rArrint(du)/(a^2+u^2)=1/atan^-1(u/a)+ctoa>0#