Is #f(x)=4x^5-2x^4-9x^3-2x^2-6x# concave or convex at #x=-1#?
1 Answer
Jan 22, 2016
Concave (also called "concave down").
Explanation:
Concavity and convexity are determined by the sign of the second derivative:
- If
#f''(-1)<0# , then the function is concave at#x=-1# . - If
#f''(-1)>0# , then the function is convex at#x=-1# .
Find the second derivative:
#f(x)=4x^5-2x^4-9x^3-2x^2-6x#
#f'(x)=20x^4-8x^3-27x^2-4x-6#
#f''(x)=80x^3-24x^2-54x-4#
Find the sign of the second derivative when
#f''(-1)=80(-1)^3-24(-1)^2-54(-1)-4#
#=80(-1)-24(1)+54-4=-80-24+50=-54#
Since
graph{4x^5-2x^4-9x^3-2x^2-6x [-5, 5, -26.45, 19.8]}