We calculate the first and second derivatives.
#f(x)=-x^3-(x-2)(x-1)#
#f(x)=-x^3-(x^2-3x+2)#
#f(x)=-x^3-x^2+3x-2#
#f'(x)=-3x^2-2x+3#
#f''(x)=-6x-2#
There is a point of inflexion when #f''(x)=0#
#-6x-2=0#
#6x=-2#
#x=-2/6=-1/3#
We build a chart
#color(white)(aaaa)##Interval##color(white)(aaaa)##(-oo,-1/3)##color(white)(aaaa)##(-1/3,+oo)#
#color(white)(aaaa)##f''(x)##color(white)(aaaaaaaaaaaa)##+##color(white)(aaaaaaaaaaaaa)##-#
#color(white)(aaaa)##f(x)##color(white)(aaaaaaaaaaaaaa)##uu##color(white)(aaaaaaaaaaaaa)##nn#
At #x=-1#
#f''(-1)=(-6*-1)-2=4#
As #f''(x)>0#, the function #f(x)# is convex.
Also,
#(-1) in (-oo,-1/3)# and the curve is #uu# (convex)
graph{-x^3-(x-2)(x-1) [-12.66, 12.65, -6.33, 6.33]}