Laplace transforms... How do I go about getting #y#? #y''-2y'-3y=0#, #y(4)=-3#, #y'(4)=-17#

2 Answers
Sep 9, 2017

I assume #y(0)=A# and #y'(0)=B#

After taking Laplace transform both sides,

#s^2*Y(s)-s*y(0)-y'(0)-2*[s*Y(s)-y(0)]-3Y(s)=0#

#s^2*Y(s)-As-B-2s*Y(s)-2A-3Y(s)=0#

#(s^2-2s-3)*Y(s)=As+2A+B#

#(s+1)*(s-3)*Y(s)=As+2A+B#

#Y(s)=(As+2A+B)/[(s+1)*(s-3)]#

#Y(s)=(5A+B)/4*1/(s+1)-(A+B)/4*1/(s-3)#

After taking inverse Laplace transformation both sides,

#y=(5A+B)/4*e^(-x)-(A+B)/4*e^(3x)#

Now, I use #y(4)=-3# condition,

#(5A+B)/4*e^(-4)-(A+B)/4*e^12=-3#

I differentiate both sides and apply #y'(4)=-17# condition,

#y'=-(5A+B)/4*e^(-x)-(3A+3B)/4*e^(3x)#

#-(5A+B)/4*e^(-4)-(3A+3B)/4*e^12=-17# or,

#(5A+B)/4*e^(-4)+(3A+3B)/4*e^12=17#

From these equations, #A=2e^4-5e^(-12)# and #B=25e^(-12)-2e^4#

Thus, #y=2e^4*e^(-x)-5e^(-12)*e^(3x)# or,

#y=2e^(4-x)-5e^(3x-12)#

Explanation:

1) I used Laplace transformation for #y(0)=A# and #y'(0)=B# conditions.

2) I solved #Y(s)#

3) I applied inverse Laplace transformation for finding #y#

4) I used #y(4)=-3# and #y'(4)=-17# conditions for finding A and B

Sep 9, 2017

# y(t) = 2e^(4-t) - 5e^(3t-12) #

Explanation:

We have:

# y''-2y'-3y=0 # with #y(4)=-3, y'(4)=-17# ..... [A]

We note that this is a shifted value IVP so we cannot just take Laplace Transforms "as is", and we must perform a substitution to shift the initial conditions to that of an IVP.

We have initial conditions pivoting on #t=4#, so we need a #-4# IVP shift:

Let # tau = t-4 => t = tau+4#
And #u(tau)=y(tau+4) => y(t) = u(t-4)#

Then substituting into the DE [A] we get:

# u''-2u'-3u=0 # with #u(0)=-3, u'(0)=-17# ..... [B]

We will need the following standard Laplace transform and inverses:

# {: (ul(f(t)=ℒ^(-1){F(s)}), ul(F(s)=ℒ{f(t)}), ul("Notes")), (f(t), F(s),), (f'(t), sF(s)-f(0),), (f''(t), s^2F(s)-s f(0)-s f'(0),), (e^(at), 1/(s-a),) :} #

We can now use this table to apply Laplace Transforms to [B]:

# ℒ \ {u''} - ℒ \ {2u'} -ℒ \ { 3u} = 0 #

# :. s^2U-su'(0)-u(0) - 2{sU-s(0)} -3U = 0# where #U(s)= ℒ \ {u(t)} #

# :. (s^2U+3s+17) - 2(sU+3) -3U = 0 #

# :. s^2U+3s+17 - 2sU-6 -3U = 0 #

# :. (s^2-2s-3)U + 3s+11 = 0 #

# :. (s-3)(s+1)U = -11-3s #
# :. U = (-11-3s)/((s-3)(s+1)) #

Now we decompose into partial fractions:

# (-11-3s)/((s-3)(s+1)) -= a/(s-3)+b/(s+1) #
# " " -= (a(s+1) +b(s-3))/((s-3)(s+1)) #
# :. -11-3s = a(s+1) +b(s-3) #

Put:

# s=3 => -20 = 4a => a=-5 #
# s=-1 => -8 = -4b => b=2 #

Thus:

# U(s) = -5/(s-3) +2/(s+1) #

And again using the above table we can now take inverse Laplace Transforms:

# u(tau) = -5e^(3tau) +2 e^(-tau) #
# \ \ \ \ \ \ = 2e^(-tau) - 5e^(3tau) #

And so, the solution we seek, after restoring the substitution is:

# y(t) = u(t-4) #
# \ \ \ \ \ \ = 2e^(-(t-4)) - 5e^(3(t-4)) #
# \ \ \ \ \ \ = 2e^(4-t) - 5e^(3t-12) #

Side Note

Although this demonstrates how to deal with a shifted data IVPs, it is in fact much easier to solve this DE using traditional methods rather than Laplace Transforms, viz:

The associated Auxiliary equation is:

# m^2-2m-3 = 0 => (m-3)(m+1) = 0 => m=-1,3#

Yielding a general solution of the homogeneous equation of the form:

# y = Ae^(-t) + Be^(3t) => y' = -Ae^(-t) + 3Be^(3t)#

And using the initial condition #y(4) = -3, y'(4)=-17# we get:

# -3 = Ae^(-4) + Be^(12) # ..... [C]
# -17 = -Ae^(-4) + 3Be^(12)# ..... [D]

Solving Simultaneously, we get:

Eg [C]+ Eq [D]:

# -20 = 4Be^(12) => B = -5e^(-12)#

Subs #B# into [C]:

# -3 = Ae^(-4) -5e^12e^(-12) #
# :. Ae^(-4) = 5 - 3#
# :. Ae^(-4) = 2#
# :. A = 2e^(4)#

So the Particular Solution is:

# y = 2e^4e^(-t) -5e^(-12t)e^(3t) #
# \ \ \ = 2e^(4-t) -5e^(3t-12) #, as above