Let #F(x)=3x# and #g(y)=1/y#, how do you find each of the compositions and domain and range?

1 Answer
Apr 29, 2016

For: #(f@g)(x) #
#h(x) = [3x]_(x=g(x)=1/x) = 3*1/x=3/x#

For: #(g@f)(x) #
#r(x) = [1/x]_(x=f(x)=3x) = 1/(3x#

Explanation:

Given:
#f(x) = 3x and g(y) =1/y#

Required:
Composite functions: #a) =>(f@g)(x) and b) =>(g@f)(x)#

Solution Strategy:
- Step 1: Rewrite the composition #h(x) = (f og)(x) =>f(g(x))#.
- Step 2: Replace each occurrence of x found in the outside function with the inside.
- Step 3: Simplify the answer

#--------------------#
For: #(f@g)(x) #

#color(crimson)(Step- 1)#
#h(x) = f(g(x))=f(1/x)#;
#color(crimson)(Step- 2)#
Replace each occurrence of #x# in #f(x)# with #g(x) = 1/x#
#h(x) = [3x]_(x=g(x)=1/x) = 3*1/x=3/x#
The dummy variable is not relevant so you can do this in terms of
#x or y or theta#a

#color(crimson)(Step- 3)# function in simplest form no step 3 needed

#--------------------#

For: #(g@f)(x) #

#color(fuchsia)(Step- 1)#
#r(x) = g(f(x))=g(3x)=#;
#color(fuchsia)(Step- 2)#
Replace each occurrence of #x# in #g(x)# with #f(x) = 3x#
#r(x) = [1/x]_(x=f(x)=3x) = 1/(3x#
#color(fuchsia)(Step- 3)# function in simplest form no step 3 needed