#lim_(xrarr-3)(x+3)/(4-sqrt(2x+22))# by using L'Hôpital's Rule?
1 Answer
Aug 26, 2017
The limit equals
Explanation:
If we try evaluating into the initial expression, we get
#L = 0/0 = oo#
So we can use l'Hopitals Rule.
#L = lim_(x->-3) 1/( - 2/(2sqrt(2x + 22)))#
#L = lim_(x->-3) 1/(- 1/sqrt((2x + 22))#
#L = lim_(x-> -3) -sqrt(2x + 22)#
Now we can evaluate directly:
#L = -sqrt(2(-3) + 22)#
#L = -sqrt(16)#
#L = -4#
If we do a graphical check, we obtain the same result.
graph{(x + 3)/(4 - sqrt(2x + 22)) [-10, 10, -5, 5]}
Hopefully this helps!