List the possible combinations of all four quantum numbers when n=2, l=1, and ml=0?
I know when n=2 and l=1 that the subshell would be 2p. I also know that the electron spin quantum number is #+1/2# or #-1/2# . Would I just list them like this: (2,1,0, #+1/2# ) and (2,1,0, #-1/2# )? Is there something that I am missing or doing wrong?
I know when n=2 and l=1 that the subshell would be 2p. I also know that the electron spin quantum number is
1 Answer
Yes your answer is correct.
Explanation:
If the principle quantum number is n, the azimuthal quantum number or orbital angular momentum quantum number can take values ranging from a minimum of 0 to a maximum value of n-1 and is a representation of the shape of the said orbital.
The magnetic quantum number which describes the number of orbitals and their orientation in a certain subshell can take values ranging from a maximum value of +l to a minimum value of -l.
The electron spin quantum number, which describes the magnetic properties of does not depend upon any other quantum number, can only take two representative values of
Since your question freezes the value of all these quantum numbers except the electron spin quantum number, the only two possible combinations of all four quantum numbers will be,
( 2,1,0,