Logbase11(2x-1) = 1 - logbase11 (x+4). find the value of x with detailed reasoning?

2 Answers
Mar 11, 2018

#x=3/2#

Explanation:

Note that in #log_11(2x-1)=1-log_11(x+4)#, we cannot have #2x-1<0# and #x+4<0# i.e. the domain is #x>=1/2#.

We can write #log_11(2x-1)=1-log_11(x+4)# as

#log_11(2x-1)+log_11(x+4)=1#

i.e. #log_11[(2x-1)(x+4)]=1#

or #(2x-1)(x+4)=11#

or #2x^2+8x-x-4=11#

or #2x^2+7x-15=0#

or #2x^2-3x+10x-15=0#

or #x(2x-3)+5(2x-3)=0#

or #(x+5)(2x-3)=0#

i.e. either #x+5=0# or #2x-3=0#

i.e. #x=-5# or #x=3/2#

but as #x=-5# is not in the domain.

hence #x=3/2#

Mar 11, 2018

#x=3/2#

Explanation:

#log_(11)(2x-1)=1-log_(11)(x+4)#

Add #bb(log_(11)(x+4))# to both sides:

#log_(11)(2x-1)+log_(11)(x+4)=1#

By the law of logarithms:

#loga+logb=log(ab)#

#:.#

#log_(11)(2x-1)+log_(11)(x+4)=log_(11)((2x-1)(x+4))#

#-> log_(11)(2x^2+7x-4)=1#

By the law of logarithms:

#b^(log_ba)=a#

#:.#

# 11^(log_(11)(2x^2+7x-4))=11^1#

#-> 2x^2+7x-4=11#

#2x^2+7x-15=0#

Solving for #x#

Factor:

#(x+5)(2x-3)=0=>x=-5 and x= 3/2#

For real numbers:

#log(x)# only exist if #x>0#

For:

#x=-5#

#(2x-1)=(2(-5)-1)=-11color(white)(88)# Invalid for real numbers.

For:

#x=3/2#

#(2x-1)=(2(3/2)-1)=2#

and:

#(x+4)=((3/2)+4)=11/2#

Only #x=3/2#