More on Mechanics?

enter image source here

1 Answer
Nov 21, 2016

See below.

Explanation:

We will be using the so called Euler Lagrange formulation

d/dt((partialL)/(partial dot q_i))-(partial L)/(partial q_i)=Q_iddt(L.qi)Lqi=Qi

where L = T-VL=TV. In this exercise we have V=0V=0 so L = TL=T

Calling x_axa the center of left cylinder coordinate and x_bxb the rigth one, we have

x_b=x_a+R costheta+Lcosalphaxb=xa+Rcosθ+Lcosα

Here sinalpha=R/Lsinthetasinα=RLsinθ so substituting for alphaα

x_b=x_a-R costheta + sqrt[L^2 - R^2 sin^2theta]xb=xaRcosθ+L2R2sin2θ

now deriving

dot x_b=dot x_a + Rsin(theta) dot theta-((R^2cos(theta)sin(theta))/sqrt(L^2-R^2sin^2(theta)))dot theta.xb=.xa+Rsin(θ).θ⎜ ⎜R2cos(θ)sin(θ)L2R2sin2(θ)⎟ ⎟.θ

but

T=1/2 J (omega_a^2+omega_b^2)+1/2m(v_a^2+v_b^2)T=12J(ω2a+ω2b)+12m(v2a+v2b)

Here JJ is the inertia momentum regarding the mass center. Also,

v_a= dot x_a=R dot thetava=.xa=R.θ
omega_a = dot thetaωa=.θ

so, after substitutions and calling xi(theta) = 1-(Rcos(theta))/sqrt(L^2-R^2sin^2(theta))ξ(θ)=1Rcos(θ)L2R2sin2(θ) we have

T=1/2(J+mR^2)(1+(1+sin(theta)xi(theta))^2)dot theta^2T=12(J+mR2)(1+(1+sin(θ)ξ(θ))2).θ2

We choosed thetaθ as the generalized coordinate. So we will reduce FF actuating in the coordinate xx to an equivalent force in thetaθ. This coordinate acts rolling wise so we need a generalized momentum regarding the contact point in the floor, which is

Q_(theta)=FR(1+ sintheta)Qθ=FR(1+sinθ)

The movement equations are obtained after

(J+mR^2)((1+sin(theta)xi(theta))(cos(theta)xi(theta)+sin(theta)xi'(theta))dot theta^2+(1+(1+sin(theta)xi(theta))^2)ddot theta)=FR(1+sin(theta)) now solving for ddot theta

ddottheta=(FR(1+sin(theta))-(J+mR^2)(1+sin(theta)xi(theta))(cos(theta)xi(theta)+sin(theta)xi'(theta))dottheta^2)/((J+mR^2)(1+(1+sin(theta)xi(theta))^2))

Attached two plots. The first shows theta evolution and the second is for dottheta

Value of parameters:

R=0.5,J=1,m=1,L=2 The applied force is shown in dased red.

enter image source here

enter image source here