#(qn+1)/(qn)*(qn+p+1)/(qn+p)cdots(qn+np+1)/(qn+np)=#
#(1+1/(n q))(1+1/(nq+p))cdots(1+1/(nq+np)) =prod_(m=0)^n(1+1/(n q+p m))#
Calling #L_0 = lim_(n->oo)prod_(m=0)^n(1+1/(n q+p m))#
applying #log# to both sides
#log(L_0)=lim_(n->oo)sum_(m=0)^n log(1+1/(n q+m p)) =#
#lim_(n->oo)sum_(m=0)^nlog[(1+1/(n (q+m/n p)))^n]1/n# and this is the Riemann-Stiltjes integral
#lim_(n->oo)int_(xi=0)^(xi=1) log[(1+1/(n (q+xi p)))^n]d xi#
so
#log(L_0)=lim_(n->oo)log((1/(1/(nq) + 1))^((nq)/p)(1 + 1/(n(p+q)))^((n(p+q))/p)((1 + n (p + q))/(1 + n q))^(1/p))#
or
#log(L_0)=log(e^(-1/p) e^(1/p) ((p + q)/q)^(1/p)) = log(((p + q)/q)^(1/p))#
so finally
#L_0=((p + q)/q)^(1/p)#