We need
#int(u'(x)dx)/(u(x))=ln(u(x))+C#
#int(dx)/(x^2+1)=arctan(x)+C#
Perform the decomposition into partial fractions
#(5)/((x-1)(x^2+2x+2))=A/(x-1)+(Bx+C)/(x^2+2x+2)#
#=(A(x^2+2x+2)+(Bx+C)(x-1))/((x-1)(x^2+2x+2))#
The denominatoras are the same, compare the numerators
#5=A(x^2+2x+2)+(Bx+C)(x-1)#
Let #x=1#, #=>#, #5=5A#, #=>#, #A=1#
Let #x=0#, #=>#, #5=2A-C#, #=>#, #C=2A-5=2-5=-3#
Coefficients of #x^2#,
#0=A+B#, #=>#, #B=-A=-1#
Therefore,
#(5)/((x-1)(x^2+2x+2))=1/(x-1)+(-x-3)/(x^2+2x+2)#
So,
#int(5dx)/((x-1)(x^2+2x+2))=int(1dx)/(x-1)-int((x+3)dx)/(x^2+2x+2)#
#=ln(|x-1|)-I#
And
#I=int((x+3)dx)/(x^2+2x+2)=int((1/2(2x+2)+2)dx)/(x^2+2x+2)#
#=1/2int((2x+2)dx)/(x^2+2x+2)+2int(dx)/(x^2+2x+2)#
#=1/2ln(|x^2+2x+2|)+2I_1#
#I_1=int(dx)/(x^2+2x+2)=int(dx)/((x+1)^2+1)#
#=arctan(x+1)#
Finally,
#int(5dx)/((x-1)(x^2+2x+2))=ln(|x-1|)-1/2ln(|x^2+2x+2|)-2arctan(x+1)+C#