Partial fractions #\int5/((x^2+2x+2)(x-1))#?

I am getting results like this, are they ok so far?

#A+C=0#, #B-A+2C=0#, #2C-B=5#

1 Answer
Apr 13, 2018

The answer is #=ln(|x-1|)-1/2ln(|x^2+2x+2|)-2arctan(x+1)+C#

Explanation:

We need

#int(u'(x)dx)/(u(x))=ln(u(x))+C#

#int(dx)/(x^2+1)=arctan(x)+C#

Perform the decomposition into partial fractions

#(5)/((x-1)(x^2+2x+2))=A/(x-1)+(Bx+C)/(x^2+2x+2)#

#=(A(x^2+2x+2)+(Bx+C)(x-1))/((x-1)(x^2+2x+2))#

The denominatoras are the same, compare the numerators

#5=A(x^2+2x+2)+(Bx+C)(x-1)#

Let #x=1#, #=>#, #5=5A#, #=>#, #A=1#

Let #x=0#, #=>#, #5=2A-C#, #=>#, #C=2A-5=2-5=-3#

Coefficients of #x^2#,

#0=A+B#, #=>#, #B=-A=-1#

Therefore,

#(5)/((x-1)(x^2+2x+2))=1/(x-1)+(-x-3)/(x^2+2x+2)#

So,

#int(5dx)/((x-1)(x^2+2x+2))=int(1dx)/(x-1)-int((x+3)dx)/(x^2+2x+2)#

#=ln(|x-1|)-I#

And

#I=int((x+3)dx)/(x^2+2x+2)=int((1/2(2x+2)+2)dx)/(x^2+2x+2)#

#=1/2int((2x+2)dx)/(x^2+2x+2)+2int(dx)/(x^2+2x+2)#

#=1/2ln(|x^2+2x+2|)+2I_1#

#I_1=int(dx)/(x^2+2x+2)=int(dx)/((x+1)^2+1)#

#=arctan(x+1)#

Finally,

#int(5dx)/((x-1)(x^2+2x+2))=ln(|x-1|)-1/2ln(|x^2+2x+2|)-2arctan(x+1)+C#