Please solve q 64 ?

enter image source here

1 Answer
May 11, 2018

#/_QRP=55^@#

Explanation:

enter image source here

Given that, #PR# is the diameter of circle and #/_RPS,/_QPR,/_QRP, and /_PRS# form an #AP#. Also, #/_RPS=15^@#

Let #/_QPR=x and /_PRS=y#.

In #DeltaPRS, /_PRS+/_PSR+/_PRS=180#

#rarr15^@+/_PRS+90^@=180^@#

#rarr/_PRS=75^@#

If three numbers #a,b,c# are in #AP# then #a+c=2b#

#15^@,x,y# and #x,y,75^@# are in #AP# as #15^@,x,y,75^@# are in AP .

So, #15^@+y=2x#.....[1]

and #x+75^@=2y#.....[2]

From [1], #x=(15^@+y)/2#

Putting the value of #x# in eqn [2],

#rarr(15+y^@)/2+75^@=2y#

#rarr(15^@+y+150^@)/2=2y#

#rarr165^@+y=4y#

#rarry=/_QRP=55^@#

So, the correct option is (1).