Prove that for every #x>0,x/(1+x^2)<tan^(-1)(x)<x#?

2 Answers
Apr 8, 2018

#(1) If,f'(x)>0 ,AAin(a,b)# then #f # #"is "color(blue)"Strictly Increasing function"# on #(a,b)"#
#(2)f # #"is "color(blue)"Strictly Increasing function"# on #(a,b)"#,then
#x_1>x_2=>f(x_1)>f(x_2)#

Explanation:

We have, #x>0=>x in(0,00)# given to prove,

#x/(1+x^2) < tan^-1x < x#

Let,

#color(red)(f(x)=tan^-1x-x/(1+x^2)....to(A)#

#=>f^'(x)=1/(1+x^2)-((1+x^2)*1-x(2x))/((1+x^2)^2#

#=>f^'(x)=1/(1+x^2)-(1-x^2)/((1+x^2)^2)= (2x^2)/((1+x^2)^2)>0#

i.e. #x>0=>f^'(x)>0=>f,##"is "color(blue)"Strictly Increasing function"#

#:.x>0=>f(x)>f(0)#,where,#f(0)=tan^-1 0-0/1=0#

#=>f(x)>0..............to [ Use (A)# ]

#=>tan^-1x-x/(1+x^2)>0=>color(blue)(tan^-1x>x/(1+x^2)...to(M)#

Again let,

#color(red)(g(x)=x-tan^-1x....to(B)#

#=>g^'(x)=1-1/(1+x^2)=x^2/(1+x^2)> 0#

i.e. #x>0=>g^'(x)>0=>g,##"is "color(blue)"Strictly Increasing function"#

#:.x>0=>g(x)>g(0),where, g(0)=0-tan^-1 0=0#

#=>g(x)>0................to [ Use (B) ]#

#=>x-tan^-1x>0#

#=>color(blue)(x>tan^-1x...to(N)#

From #(N) and (M)#

# x >tan^-1x> x/(1+x^2)#

i.e. #x/(1+x^2) < tan^-1x < x#

Apr 8, 2018

Kindly refer to the Explanation.

Explanation:

We use the following Form of the Mean Value Theorem (MVT) :

If #f# is continuous on #[0,x]# and derivable on #(0,x)#, then,

#(f(x)-f(0))/x=f'(thetax)# for some #theta in (0,1)#.

This version of MVT can be easily proved from its usual version.

So, let us skip it it and proceed to prove the desired inequality.

Consider #f(x)=tan^-1x, :. f'(x)=1/(1+x^2)#.

We know that the conditions of MVT are fulfilled by #f#.

#:. {tan^-1 x-tan^-1 0}/x=1/{1+(thetax)^2}; x>0, 0ltthetalt 1#.

#i.e., tan^-1 x/x=1/(1+theta^2x^2); x>0, 0 < theta <1#.

#:. x/tan^-1x-1=theta^2x^2; x>0, 0 < theta <1......(star)#.

Now multiplying #0ltthetalt1" by "x^2gt0#, we have,

# 0lttheta^2x^2ltx^2#.

Utilising this in #(star)#, we get,

#0 lt x/tan^-1x-1 ltx^2#.

Multiplying this by #1/x gt 0#, we get, #0 lt 1/tan^-1 x-1/x lt x#.

Adding #1/x# we get, #1/x lt 1/tan^-1 x lt x+1/x=(1+x^2)/x#.

Inverting, #x gt tan^-1x gt x/(1+x^2)#, or what is the same as to say,

#x/(1+x^2) lt tan^-1x lt x," for "x gt 0#.

Spread the Joy of Maths.!