Prove the identity # sin theta/ (1-cos theta) - 1/sin theta -= 1/tan theta #?
1 Answer
May 7, 2018
We seek to prove that:
# sin theta/ (1-cos theta) - 1/sin theta -= 1/tan theta #
Consider the LHS:
# LHS = sin theta/ (1-cos theta) - 1/sin theta #
# \ \ \ \ \ \ \ \ = ( sin^2 theta - (1-cos theta)) / ((1-cos theta)(sin theta)) #
# \ \ \ \ \ \ \ \ = ( 1-cos^2 theta - 1+cos theta) / ((1-cos theta)(sin theta)) #
# \ \ \ \ \ \ \ \ = ( cos theta- cos^2 theta) / ((1-cos theta)(sin theta)) #
# \ \ \ \ \ \ \ \ = ( cos theta(1- cos theta)) / ((1-cos theta)(sin theta)) #
# \ \ \ \ \ \ \ \ = ( cos theta) / (sin theta) #
# \ \ \ \ \ \ \ \ = cot theta #
# \ \ \ \ \ \ \ \ = 1/tan theta #
# \ \ \ \ \ \ \ \ = LHS \ \ \ \ QED #