R = r#sqrt((A+B)/(A-B))#. Make A the subject of the formula?
1 Answer
Jun 28, 2017
Explanation:
#"to gain access to the contents of the square root"#
#"we require to "color(blue)"square both sides"#
#"Note " sqrtaxxsqrta=a#
#rArr(sqrta)^2=a# that is squaring the square root obtains the value inside the square root.
#rArrR^2=(r^2(A+B))/(A-B)larrcolor(blue)" cross-multiply"#
#rArrR^2(A-B)=r^2(A+B)#
#"we require to isolate the terms with A"#
#"distribute and rearrange"#
#R^2A-R^2B=r^2A+r^2B#
#rArrR^2A-r^2A=r^2B+R^2B#
#"take out A as a common factor, B if we wish"#
#rArrA(R^2-r^2)=B(r^2+R^2)#
#"divide both sides by " (R^2-r^2)#
#rArrA=(B(r^2+R^2))/(R^2-r^2)#