Probability with samples?

Answer whichever part (a-e) you can/want to :)


computer

1 Answer
Jul 25, 2017

a) #P(x\lt40)\approx0.189#

b) #P(\bar{x}\lt40),n=9\rArr\approx0.0041#

c) #P(\bar{x}\lt40),n=12\rArr\approx0.0011#

d) not sure see explanation for more

e) unusual as it exceeds 2 z-scores (or 2 standard deviations)

Explanation:

Given information
#\mu=43.7# cm, #\sigma=4.2# cm

Working it out

a) #P(X\lt40)=P(z\lt(40-43.7)/4.2)=P(z\lt-3.7/4.2)##=P(z\lt-0.8810)\approx0.189#


b) #n=9\rarr\sigma_{\bar{x}}=4.2/\sqrt{9}=4.2\div3=1.4\rArrP(\bar{x}\lt40)##=P(z\lt-3.7\div1.4)=P(z\lt-2.6429)\approx0.0041#


c) #n=12\rarr\sigma_{\bar{x}}=4.2/\sqrt{12}\approx1.2124\rArrP(\bar{x}\lt40)##=P(z\lt-3.7\div1.2124)=P(z\lt-3.0517)\approx0.0011#


d) Increasing sample size appears to lower probability. This is likely because --


e) #n=15\rarr\sigma_{\bar{x}}=4.2/\sqrt{15}\approx1.0844##\bar{x}=46;z=(46-43.7)/(1.0844)\approx2.1209#
This result is unusual as it exceeds a z-score of 2.