Show that #ln(1+x) < x-(x^2)/(2(1+x)), AA x>0#?

3 Answers
Apr 14, 2017

See explanation below

Explanation:

Simplify the expression at the second member:

#f(x) = x-x^2/(2(1+x)) = (2x(1+x)-x^2)/(2(1+x))= (2x+2x^2-x^2)/(2(1+x)) =(2x+x^2)/(2(1+x))#

We can further simplify adding and subtracting #1# to the numerator:

#f(x)=(1+2x+x^2-1)/(2(1+x)) = ((1+x)^2 -1)/(2(1+x)) = (1+x)/2 -1/(2(1+x))#

Consider now:

#(df)/dx = 1/2+1/2 1/(1+x)^2#

#d/dx ln(1+x) = 1/(1+x)#

We have:

#f(x)-ln(1+x) = f(0)+ln(1+0)+ int_0^x g(t)dt = 1/2-1/2+0+int_0^x g(t)dt = int_0^x g(t)dt#

where #g(x) = (df)/dx -d/dx ln(1+x)#

so:

#g(x) = 1/2 +1/2 1/(1+x)^2 -1/(1+x)#

#g(x) =((1+x)^2+1+2(1+x))/(2(1+x)^2)#

#g(x) =(1+2x +x^2+1+2+2x)/(2(1+x)^2)#

#g(x) = (x^2+4x+4)/(2(1+x)^2)#

#g(x) = (x+2)^2/(2(1+x)^2)#

Clearly #g(x) >0# for every #x# and then for #x>0#:

#int_0^x g(t)dt > 0#

so:

#f(x)-ln(1+x) > 0#

#f(x) > ln(1+x) #

Apr 14, 2017

See below.

Explanation:

Calling #f(x)=x-log_e(x+1)+x^2/(2(x+1))# we have

#f(0) = 0#

To demonstrate that #f(x) gt 0# for #x > 0#

we will show that #f(0)# is a minimum point. So we will determine the stationary points.

#(df)/(dx) = (4 x + 3 x^2)/(2 (1 + x)^2) = 0#

solving we get at #x = -4/3# and #x = 0#

qualifying the stationary points we get

#(d^2f)/(dx^2) = (x+2)/(x+1)^3# assuming the values

#((x,(d^2f)/(dx^2),"type" ),(-4/3,-18,"maximum"),(0,2,"minimum"))#

so concluding, #x=0# is a minimum of #f(x)# so

for #x > 0# we have #f(x) > 0# and then

#log_e(x+1) < x+ x^2/(2 (x + 1))#

Apr 14, 2017

See the Proof given in the Explanation.

Explanation:

Define fun. #f#, by, #f(x)=x-x^2/(2(1+x))-ln(1+x), x >0.#

We have, #x^2/(1+x)={(x^2-1)+1}/(1+x)=(x^2-1)/(1+x)+1/(1+x)=x-1+1/(1+x).#

#:. f(x)=x-1/2{x-1+1/(1+x)}-ln(1+x),#

#=x/2+1/2-1/(2(1+x))-ln(1+x), i.e., #

# f(x)=(x+1)/2-1/(2(1+x))-ln(1+x), x>0.#

#:. f'(x)=1/2-1/2{-1/(1+x)^2}-1/(1+x),#

#=1/2+1/(2(1+x)^2)-1/(1+x),#

#={(1+x)^2+1-2(1+x)}/(2(1+x)^2),#

#rArr f'(x)=x^2/(2(1+x)^2) (x>0).#

Clearly, #f'(x)>0,# which means that, # f" is "uarr AA x >0.#

#:. x > 0 rArr f(x) > f(0)=0, i.e., f(x) > 0.#

#rArr x-x^2/(2(1+x))-ln(1+x) > 0, AA x > 0" or, equivalently,"#

# ln(1+x) < x-x^2/(2(1+x)), x > 0.#

#Enjoy Maths.!