# Simplify: ((-24)/(-4))-:2+3*(-5+1)^2?

May 18, 2016

51

#### Explanation:

Using PEDMAS
$\left(- \frac{24}{-} 4\right) \div 2 + 3 {\left(- 5 + 1\right)}^{2}$

$\text{P} \to \left(+ 6\right) \div 2 + 3 {\left(- 4\right)}^{2}$

$\text{E} \to \left(6\right) \div 2 + 3 \left(16\right)$

$\text{D"->6/2+3(16)" "->" } 3 + 3 \left(16\right)$

$\text{M} \to 3 + 48$

$\text{A} \to 51$

$\text{S"->" not applicable}$

May 19, 2016

$\frac{- 24}{- 4} \div 2 + 3 {\left(- 5 + 1\right)}^{2} = \textcolor{b l u e}{51}$

#### Explanation:

$\frac{- 24}{- 4} \div 2 + 3 {\left(- 5 + 1\right)}^{2}$

The order of operations is parentheses, exponents, multiplication and division from left to right, and addition and subtraction from left to right.

Simplify $\left(- 5 + 1\right)$.

$\frac{- 24}{- 4} \div 2 + 3 {\left(- 4\right)}^{2}$

Simplify ${\left(- 4\right)}^{2}$.

$\frac{- 24}{- 4} \div 2 + 3 \times 16$

Simplify $\frac{- 24}{- 4}$.

$\frac{24}{4} \div 2 + 3 \times 16$

Simplify $\frac{24}{4}$.

$6 \div 2 + 3 \times 16$

Simplify $6 \div 2$.

$3 + 3 \times 16$

Simplify $3 \times 16$.

$3 + 48$

Simplify $3 + 48$.

$51$

Aug 1, 2016

$51$

#### Explanation:

To make the order of operations easier, count the number of terms first. Keep the terms separate.

EAch term must simplify to a single answer. The answers will be added or subtracted in the LAST step. You can work in different terms in the same step

Do the strongest operations first - the power and roots.

Then do multiplication and division.

If this order is to be changed, parentheses are used to indicate which must be done before the normal order.

$\textcolor{red}{\frac{- 24}{- 4} \div 2} \text{ "color(blue)(+3(-5+1)^2)" has 2 terms}$
$\text{division addition}$

color(red)((6-:2)" "color(blue)(+3(-4)^2)

color(red)((3)" "color(blue)(+3(16)

color(red)((3)" "color(blue)(+48)

=$51$