Solve (2+sqrt3)cos theta=1-sin theta?

#(2+sqrt3)cos theta=1-sin theta#

2 Answers
Mar 10, 2018

#rarrx=(6n-1)*(pi/3)#

#rarrx=(4n+1)pi/2# Where #nrarrZ#

Explanation:

#rarr(2+sqrt(3))cosx=1-sinx#

#rarrtan75^@*cosx+sinx=1#

#rarr(sin75^@*cosx)/(cos75^@)+sinx=1#

#rarrsinx*cos75^@+cosx*sin75^@=cos75^@=sin(90^@-15^@)=sin15^@#

#rarrsin(x+75^@)-sin15^@=0#

#rarr2sin((x+75^@-15^@)/2)cos((x+75^@+15^@)/2)=0#

#rarrsin((x+60^@)/2)*cos((x+90^@)/2)=0#

Either #rarrsin((x+60^@)/2)=0#

#rarr(x+60^@)/2=npi#

#rarrx=2npi-60^@=2npi-pi/3=(6n-1)*(pi/3)#

or, #cos((x+90^@)/2)=0#

#rarr(x+90^@)/2=(2n+1)pi/2#

#rarrx=2*(2n+1)pi/2-pi/2=(4n+1)pi/2#

Mar 10, 2018

If, #costheta=0=>sintheta=1=>theta=(4k+1)pi/2,kinZ#
#theta=2kpi-pi/3,kinZ#,

Explanation:

#(2+sqrt3)costheta=1-sintheta#
#andcostheta!=0#, dividing both sides by #costheta#
#2+sqrt3=sectheta-tantheta=>sectheta-tantheta=2+sqrt3 to (I)#
#:.1/(sectheta-tantheta)=1/(2+sqrt3)##=>(sec^2theta-tan^2theta)/(sectheta-tantheta)=1/(2+sqrt3)*(2-sqrt3)/(2-sqrt3)#
#=>sectheta+tantheta=2-sqrt3 to (II)#
Adding #(I) and (II)#,we get.#2sectheta=4=>sectheta=2#
#color(red)(costheta=1/2>0)#, From the given equn.
#costheta=1/2=>(2+sqrt3)(1/2)=1-sintheta##=>1+sqrt(3)/2=1-sintheta=>color(red)(sintheta=-sqrt(3)/2<0)#
#theta=2kpi-pi/3,kinZ#,.......... #(IV^(th)#quadrant)