Solve the initial value problem #y'=ky^2\lnx#, with #y(1)=-1#?

My work:

#dy/dx=ky^2\lnx#
#dy/y^2=k\lnxdx#
#\inty^-2dy=\intk\lnxdx=k\int\lnxdx#

See answer below for the rest

1 Answer
May 30, 2018

Continued from #\color(crimson)(\text(above))#

Explanation:

#\color(indianred)(dy/dx=ky^2\lnx)#
#\color(palevioletred)(dy/y^2=k\lnxdx)#
#\color(lightcoral)(\inty^-2dy=\intk\lnxdx=k\int\lnxdx)#

the rest...
#y^-1/-1=k[\lnx(x)-\int1dx]#
#-1/y=kx\lnx-kx+C#
#y=-1/(kx\lnx-kx+C)#

Given #y(1)=-1#, then
#-1=-1/(k(1)\ln(1)-k(1)+C)#
#-1=-1/(k(0)-k+C)#
#-1/-1=-k+C#
#1=-k+C#, #C=1+k#

#\thereforey=-1/(kx\lnx-kx+(1+k))#