SOLVE to the nearest four decimals?


#sqrt(3)*(cotx)^2+cotx=1#

2 Answers
May 17, 2018

#x = 62^@3393 + k180^@#
#3x = - 42^@2363 + k180^@#

Explanation:

Method 1
#sqrt3(cos^2 x/(sin^2 x)) + cos x/(sin x) = 1#
#sqrt3.cos^2 x + sin x.cos x = sin^2 x#
Divide both side by cos x, (condition cos x != 0)
#sqrt3 + tan x = tan^2 x#
#tan^2 x - tan x - sqrt3 = 0#
Solve this quadratic equation for tan x.
D = d^2 = b^2 - 4ac = 1 + 4sqrt3 = 7.9282 --> #d = +- 2.8157#
There are 2 real roots:
#tan x = -b/(2a) +- d/(2a) = 1/2 +- 2.8157/2#
#tan x = 0.5 + 1.4079 = 1.9079#
#tan x = 0.5 - 1.4079 = - 0.9079#
a. #tan x = 1.9079#
Calculator and unit circle give:
#x = 62^@3393 + k180^@#
b. #tan x = - 0.9079#
#x = -42^@2363 + k180^@#

May 17, 2018

#x = 62^@3405 + k180^@#
#x = -42^@2614 + k180^@#

Explanation:

Method 2
Call cot x = t, we get a quadratic equation to solve:
#sqrt3t^2 + t - 1 = 0#
#D = d^2 = b^2 - 4ac = 1 + 4sqrt3 = 7.9282# --> #d = +- 2.8157#
There are 2 real roots:
#t = -b/(2a) +- d/(2a) = - 1/(2sqrt3) +- 2.8157/(2sqrt3) =#
#= - 0.2887 +- 0.8128#
cot x = t = 0.5241 --> #tan x = 1.9080#
cot x = t = - 1.1015 --> #tan x = - 0.9078#
a. tan x = 1.9080
#x = 62^@3405 + k180^@#
b. tan x = - 0.9087
#3x = - 42^@2614 + k180^@#