Square root of complex numbers?

Find the square roots of complex numbers
#z=144/(5-2i)#

1 Answer
Feb 5, 2018

#sqrt(144/(5-2i))=12/root(4)29(cos(theta/2)+isin(theta/2))#

where #theta=tan^(-1)(2/5)#

Explanation:

#sqrt(144/(5-2i))=sqrt((144(5+2i))/((5-2i)(5+2i))#

= #12sqrt((5+2i)/29)=12/sqrt29sqrt(5+2i)#

Let #5+2i=r(costheta+isintheta)#,

then #r=sqrt(5^2+2^2)=sqrt29# and #theta=tan^(-1)(2/5)#

and hence usin DeMoivre's theorem

#sqrt(5+2i)=root(4)29(cos(theta/2)+isin(theta/2))#

Hence #sqrt(144/(5-2i))=12/sqrt29root(4)29(cos(theta/2)+isin(theta/2))#

= #12/root(4)29(cos(theta/2)+isin(theta/2))#

where #theta=tan^(-1)(2/5)#