The area of a rectangular desktop is #6x^2- 3x -3#. The width of the desktop is #2x+1#. What is the length of the desktop?

4 Answers
Dec 15, 2016

The length of the desktop is #3(x-1)#

Explanation:

Area of the rectangle is #A=l*w# , where #l ,w # are length and width of rectangle respectively.

So #l=A/w or l = (6x^2-3x-3)/(2x+1) or (3(2x^2-x-1))/(2x+1) or (3(2x^2-2x+x-1))/(2x+1) or (3(2x(x-1)+1(x-1)))/(2x+1) or (3cancel((2x+1))(x-1))/cancel((2x+1)) or 3(x-1)#

The length of the desktop is #3(x-1)# [Ans]

Dec 15, 2016

Length is #(3x-3)#

Explanation:

Note that LHS is left hand side and RHS is right hand side

The way the question is worded means we have to have the initial condition of:

#(2x+1)(?+?)=6x^2-3x-3 ........................Equation(1)#

#color(blue)("Consider the "x^2" term:")#

We have #2x xx?=6x^2#

To end up with #x^2# we must have:

#2x xx?x=6x^2#

To end up with the 6 from #6x^2# we must have:

#2x xx3x=6x^2#

So we now have:

#(2x+1)(3x+?)=6x^2-3x-3.....................Equation(1_a)#
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

#color(blue)("Consider the constant of "color(red)(-3)" in "6x^3-3xcolor(red)(-3))#

We already have 1 in the #(2x+1)# and #1xx(-3)=-3#

This implies that we have:#" "(2x+1)(3x-3)#

So we need to test:

#color(blue)((2x+1))color(green)((3x-3)) = 6x^2-3x-3#
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

#color(blue)("Consider just the brackets")#

Multiply the 2nd brackets by everything in the 1st brackets

#color(green)(color(blue)(2x)(3x-3)color(blue)(" "+1)(3x-3))#

#6x^2-6x" "+color(white)(..)3x-3#

#6x^2-3x-3 = "LHS of the equation"#

So LHS = RHS of the equation, thus the answer is:

#"Width "xx" Length"#

#(2x+1)xx(3x-3)#

Dec 15, 2016

3x-3

Explanation:

Area of a rectangle=W*L
#6x^2-3x-3 =(2x+1)*L#
#=(6x^2-3x-3)/(2x+1)#
#=3(2x^2-x-1)/(2x+1)#
#=3((2x+1)(x-1))/((2x+1))#
cancel out 2x+1
Then length= 3x-3
check
#3(x-1)(2x+1)#
#(3x-3)(2x+1)#
#6x^2-3x-3=3(x-1)(2x+1)#
#6x^2-3x-3=6x^2-3x-3#

Dec 16, 2016

#color(red)("Alternative method - polynomial division")#

#"Length"= 3x-3#

Explanation:

We have: #" width"xx"length"=6x^2-3x-3#

#=>"length "=(6x^2-3x-3)/("width")" "=" "(6x^2-3x-3)/(2x+1)#

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#color(blue)("The division")#

#" "color(white)(.)6x^2-3x-3#
#color(red)(3x)(2x+1)-> ul(6x^2+3x) larr" subtract"#
#" "0color(white)(.)-6xcolor(white)(.)-3#
#color(red)(-3)(2x+1)->ul(" "-6xcolor(white)(.)-3) larr" subtract"#
#" "0color(white)(.)+color(white)(.)0#

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#=>"length" = color(red)(3x-3) = (6x^2-3x-3)/(2x+1)#