# The coordinates of a polygon are (2, 3), (4,7), (8,5), and (7,2). If the polygon rotates 90° clockwise about the origin, in which quadrant will the transformation lie? What are the new coordinates?

## A) Quad II; (-2, 3), (-4,7), (-8,5), and (-7,2) B) Quad IV; (3, -2), (7, -4), (5, -8), and (2, -7) C) Quad III; (-2, -3), (-4,-7), (-8,-5), and (-7,-2) D) Quad III: (-3, -2), (-7,-4)), (-5, -8), and (2, -7)

Mar 29, 2018

B) All the four points and the polygon lie in the IV Quadrant

and the coordinates are $\left(3 , - 2\right) , \left(7 , - 4\right) , \left(5 , - 8\right) , \left(2 , - 7\right)$

#### Explanation:

Given coordinates : $A \left(2 , 3\right) , B \left(4 , 7\right) , C \left(8 , 5\right) , D \left(7 , 2\right)$

Presently, the polygon lies in the I Quadrant.

All the four points are rotated about the origin by ${90}^{\circ} \mathmr{and} {\left(\frac{\pi}{2}\right)}^{c}$

$A \left(2 , 3\right) \to A ' \left(3 , - 2\right)$

$B \left(4 , 7\right) \to B ' \left(7 , - 4\right)$

C (8, 5) -> C' (5, -8)#

$D \left(7 , 2\right) \to D ' \left(2 , - 7\right)$

All the four points and the polygon lie in the IV Quadrant

and the coordinates are $\left(3 , - 2\right) , \left(7 , - 4\right) , \left(5 , - 8\right) , \left(2 , - 7\right)$