.
Let's let #/_BDC= /_x# and #/_DBC= /_y#
Since triangle #ABC# is an isosceles triangle then #/_ACB=80^@#
Then from triangle #BDC# we have:
#(BC)/sinx=(BD)/sin80=(DC)/siny#
From triangle #ABC# we have:
#(AC)/sin80=(BC)/sin20#
But #AC=AD+DC# and #BC=AD#. Therefore:
#AC=BC+DC#
#(BC+DC)/sin80=(BC)/sin20#
#BCsin20+DCsin20=BCsin80#
#DCsin20=BC(sin80-sin20)#
#DC=(BC(sin80-sin20))/sin20#
#(BC)/sinx=((BC(sin80-sin20))/sin20)/siny#
#(BC)/sinx=(BC(sin80-sin20))/(sinysin20)#
#(cancel color(red)(BC))/sinx=(cancelcolor(red)(BC)(sin80-sin20))/(sinysin20)#
#sinysin20=sinx(sin80-sin20)#
From triangle #BCD#, we know #x+y=100^@#
#y=100-x#
#sin(100-x)sin20=sinx(sin80-sin20)#
Using the trigonometric identity:
#sin(alpha-beta)=sinalphacosbeta-cosalphasinbeta#
#(sin100cosx-cos100sinx)sin20=sinx(sin80-sin20)#
#sin20sin100cosx-sin20cos100sinx=sinx(sin80-sin20)#
#sin20sin100cosx=sinx(sin80-sin20+sin20cos100)#
Dividing both sides by #cosx#
#sin20sin100=tanx(sin80-sin20+sin20cos100)#
Solving for #tanx#, we get:
#tanx=(sin20sin100)/(sin80-sin20+sin20cos100)#
Now, we can plug in the values of #sin# and #cos# for each angle and get a value for #tanx#:
#tanx=((0.342)(0.9848))/((0.9848-0.342+(0.342)(-0.1736))#
#tanx=0.3368/0.5834=0.5773#
#x=arctan0.5773=29.9978^@# or approximately #30^@#
#/_ADB=180-/_BDC=180-/_x=180-30=150^@#